
A New Soar Debugger
In Java

Douglas Pearson

douglas.pearson@threepenny.net



2

Why a New Debugger?

• Want to add a lot of new capabilities
• Extend TSI?

– Based around string parsing – brittle
– Kernel always embedded within debugger
– gSKI inclusion required substantial rewrite anyway
– Want plug-in and user-configurable architecture
– Long-term Eclipse IDE goal

• So decision to create a new debugger in Java



3

Some Initial Capabilities

• Structured (tree) trace
– Watch more useful

• Filtered trace
– Watch even more useful

• Automatic window updates at end of run
– “watch windows” in other debuggers

• Visual Soar integration
– Edit production / send file

• Dynamic connection to Soar kernels
– Connect/disconnect to external processes



4

Quick Demo



5

Structured/Tree Trace



6

Filtering



7

Visual Soar Integration



8

Design Principles

• XML based
– Interface into Soar via XML (SML: Soar Markup Language)

No more string parsing, supports new capabilities
– But maintain high performance

• Plug-in Architecture
– Debugger made up of a series of modules
– Future extensions and user additions

• User configurable
– Select elements you find useful
– Combine as you like
– Easier decision making on whether to include features



9

Performance Comparison

Towers of Hanoi TSI (8.5.2) Java Debugger 
(Text)

Java
Debugger
(Tree)

Watch 1
(Run 100)

1.25 secs 0.73 secs 0.75 secs

Watch 5
(Run 100)

59.68 secs 2.14 secs 1.51 secs
0.58 secs (full 
filtering)

• Faster than 8.5.2 even when using XML
• Watch 5: 40 times faster than 8.5.2
• Watch 5 in 8.6. comparable to watch 1 in 8.5.2

– In process and Towers of Hanoi



10

Remote Kernels &
Dynamic Connections

• Debugger and kernel created and destroyed together
• No way to debug kernel embedded in environment

TSI Debugger

Kernel

Environment



11

Remote Kernels &
Dynamic Connections

Java Debugger Environment

Kernel

Java Debugger

Kernel

Environment

• Connect and disconnect debugger as needed
• Embedded speed with debugging access

– If remote connection and little tracing get embedded speed



12

Nuggets
• More power

– Structured trace
– Filtered trace
– Integration with Visual Soar
– Dynamic connection and disconnection
– Debugging embedded kernels

• Higher performance
– Order of magnitude improvements
– Solid foundation

• More flexible
– Customizable layouts
– User plug-ins
– XML based; no special access to kernel



13

Coal and the Future
• Early days

– Mostly been building up the foundation
– Lots and lots more we’d like to add
– Lots of new code, so there will be some bugs lurking
– “stop” looks really slow/unresponsive

• Documentation
– “Intro to the Soar Debugger in Java.doc”
– No documentation on the internals yet (beyond comments)

• Wishlist – please do speak up now
soar-sml-list@umich.edu or 
winter.eecs.umich.edu/soarwiki/Debugger_wish_list

mailto:soar-sml-list@umich.edu

	A New Soar Debugger�In Java
	Why a New Debugger?
	Some Initial Capabilities
	Quick Demo
	Structured/Tree Trace
	Filtering
	Visual Soar Integration
	Design Principles
	Performance Comparison
	Remote Kernels &�Dynamic Connections
	Remote Kernels &�Dynamic Connections
	Nuggets
	Coal and the Future

